Neurosarcoidosis

E. Hoitsma*,#, O.P. Sharma*

*Dept of Neurology and #Sarcoidosis Management Centre, University Hospital Maastricht, Maastricht, The Netherlands, and #Dept of Pulmonary and Critical Care Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Correspondence: O.P. Sharma, Room 11-900, LAC+USC Medical Center, 1200 North State Street, Los Angeles, CA 90033, USA. Fax: 1 3232262728; E-mail: osharma@usc.edu

Sarcoidosis is an inflammatory multisystemic disorder. Its cause is not known. The disease may involve any part of the nervous system. The incidence of clinical involvement of the nervous system in a sarcoidosis population is estimated to be ~5–15% [1, 2]. However, the incidence of subclinical neurosarcoidosis may be much higher [3, 4]. Necropsy studies suggest that ante mortem diagnosis is made in only 50% of patients with nervous system involvement [5]. As neurosarcoidosis may manifest itself in many different ways, diagnosis may be complicated [2, 3, 6–10]. It may appear in an acute explosive fashion or as a slow chronic illness. Furthermore, any part of the nervous system can be attacked by sarcoidosis, but the cranial nerves, hypothalamus and pituitary gland are more commonly involved [1]. Sarcoid granulomas can affect the meninges, parenchyma of the brain, hypothalamus, brainstem, subependymal layer of the ventricular system, choroid plexuses and peripheral nerves, and also the blood vessels supplying the nervous structures [11, 12]. One-third of neurosarcoidosis patients show multiple neurological lesions. If neurological syndromes develop in a patient with biopsy-proven active systemic sarcoidosis, the diagnosis is usually easy. However, without biopsy evidence of sarcoidosis at other sites, nervous system sarcoidosis remains a difficult diagnosis [13]. Neurological symptoms may also arise in patients with inactive sarcoidosis. In such situations, neurosarcoidosis may occupy a high place in the list of differential diagnoses, but histological evidence of granulomatous involvement of the neurological apparatus is still required in these cases. Furthermore, in a smaller number of patients, sarcoidosis may selectively involve the nervous system [14, 15]. In such cases, it is important not to confuse the nonspecific local sarcoid reaction with multisystemic sarcoidosis [16]. Neurosarcoidosis is rare; most articles report small numbers of patients or case reports, and prospective studies on neurosarcoidosis are scarce [17]. Consequently, evidence-based recommendations are lacking.

Neurological manifestations of sarcoidosis

Cranial neuropathy

Cranial neuropathy is the most frequent neurological complication of sarcoidosis (table 1) [1]. Cranial nerve palsy may be due to nerve granulomas, increased intracranial pressure or granulomatous basal meningitis. A peripheral seventh nerve palsy (Bell’s palsy) is the single most common cranial nerve lesion [1], and is, indeed, the most
frequent neurological manifestation of sarcoidosis overall [2, 3, 9, 18, 22, 31]. Bilateral dysfunction occurs, both simultaneously and sequentially.

The optic nerve is the second most commonly affected cranial nerve [31]. Although sarcoid granulomas of the optic nerve are usually unilateral, they may involve both nerves [32]. Sarcoidosis of the optic nerve may occur without systemic involvement [33]. When optic neuropathy occurs, especially in young patients, multiple sclerosis is considered a likely cause. In these cases a chest radiograph with evidence of sarcoidosis makes multiple sclerosis highly unlikely [34]. Optic nerve involvement due to sarcoidosis can be divided into a chronic progressive type that responds poorly to corticosteroids [35] and an acute type that responds to prednisone [2, 35, 36].

Other cranial nerves may also be affected. Cranial neuropathies may be single or multiple [37, 38]. Heerfordt’s syndrome consists of cranial neuropathy (mostly the facial nerve), uveitis, parotid gland enlargement and fever. This syndrome is highly suggestive of sarcoidosis.

Finally, Horner’s syndrome due to disruption of the cervical sympathetic nerves [1], as well as pupillary abnormalities, including internal ophthalmoplegia, Argyll Robertson pupil and Adie’s pupil, have been described in sarcoidosis [18, 39–42].

Table 1. – Manifestation of cranial neuropathies in neurosarcoidosis

<table>
<thead>
<tr>
<th>Cranial nerve</th>
<th>Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: olfactory [18, 19]</td>
<td>Anosmia*</td>
</tr>
<tr>
<td>II: optic [20, 21]</td>
<td>Diminished visual acuity, papilloedema</td>
</tr>
<tr>
<td>III: oculomotor [22]</td>
<td>Ophthalmplegia, diplopia, ptosis</td>
</tr>
<tr>
<td>IV: trochlear [22]</td>
<td>Ophthalmplegia, diplopia</td>
</tr>
<tr>
<td>V: trigeminal [23]</td>
<td>Hypoaesthesia, neuralgia</td>
</tr>
<tr>
<td>VI: abducent [22]</td>
<td>Ophthalmplegia, diplopia</td>
</tr>
<tr>
<td>VII: facial [24, 25]</td>
<td>Bell's palsy</td>
</tr>
<tr>
<td>VIII: vestibulocochlear [18, 26, 27]</td>
<td>Vertigo, hearing loss</td>
</tr>
<tr>
<td>IX: glossopharyngeal [22]</td>
<td>Dysarthria, dysphagia</td>
</tr>
<tr>
<td>X: vagus [28–30]</td>
<td>Dysarthria, dysphagia, postural symptoms</td>
</tr>
<tr>
<td>XI: accessory [22]</td>
<td>Sternocleidomastoid weakness, trapezius weakness</td>
</tr>
<tr>
<td>XII: hypoglossal [22]</td>
<td>Dysarthria, dysphagia</td>
</tr>
</tbody>
</table>

*: may be due to sarcoidosis of the nasal mucosa.

Papilloedema

The diagnosis of neurosarcoidosis should be entertained in young adults, particularly females of childbearing age, with rapidly developing papilloedema, especially associated with the seventh or other nerve palsies. In sarcoidosis patients, fundoscopy should always be performed.

Aseptic meningitis

Meningeal symptoms may be acute or chronic. Symptoms and signs include fever, headache, neck rigidity and sterile cerebrospinal fluid (CSF) with pleocytosis (particularly lymphocytes) [43]. CSF glucose levels may be low in approximately one-fifth of patients [44]. Sometimes mental status changes and polyradiculopathy are present [45, 46]. The basal meninges may be affected, resulting in cranial neuropathy. Chronic meningitis is often recurrent and requires long-term therapy, whereas acute meningitis responds favourably to corticosteroids.
Hydrocephalus

Hydrocephalus is rare and may occur due to impaired absorption [12, 14, 47] or obstruction [48, 49]. Besides causing headache and somnolence, hydrocephalus may produce amnesia, dementia, urinary incontinence and gait disturbances [50, 51].

Cerebral sarcoid lesions

Granulomas may remain small or form large intracranial tumours and may be single or multiple. They can occupy extradural, subdural and parenchymatous locations [52–55]. Occasionally, periventricular white matter lesions are observed (fig. 1a). The latter may resemble multiple sclerosis or vascular changes. Asymptomatic periventricular white matter lesions without meningeal enhancement in sarcoidosis patients aged >50 yrs are most probably not due to sarcoidosis and can be regarded as age-related small vessel disease.

The clinical features of mass lesions are similar to those of any space-occupying intracranial mass. Granulomatous lesions are relatively frequently found in the hypothalamus and/or pituitary gland [56–60]. This may cause endocrine manifestations, such as diabetes insipidus [61], adenopituitary failure [62, 63] and amenorrhoea–galactorrhoea syndrome [59], isolated or in various combinations. Infratentorial granulomas are less common than supratentorial but cerebellar masses also occur [22]. When no evidence of systemic sarcoidosis is found, differential diagnosis of pituitary lesions consists of pituitary adenoma and lymphocytic adenohypophysitis [64].

Granulomatous cerebral angiitis also occurs in sarcoidosis [14, 65]. Ophthalmological screening is helpful in uncovering angiitis. Diffuse cerebral vasculopathy may produce psychosis, dementia and epileptic seizures [47, 66–70]. Pseudotumour cerebri due to dural

Fig. 1. – Cerebral magnetic resonance imaging of case A: a) T1-weighted, revealing nonspecific white matter lesions (arrows); and b) gadolinium-enhanced T2-weighted, revealing leptomeningeal-enhancing lesions (arrows).
sinus thrombosis as a presenting manifestation of neurosarcoidosis has also been reported [71, 72].

Case A. A 55-yr-old female was seen for a second opinion. She had suffered from low back pain, leg weakness and atypical position-independent dizziness and headache for 10 months. Physical examination revealed bilateral pyramidal syndrome with UK Medical Research Council (MRC) grade 4/5 paraparesis of both iliopsoas, hamstring and quadriceps muscles. She had extensor plantar responses and a pyramidal gait. Cerebral magnetic resonance imaging (MRI) revealed nonspecific, nonenhancing white matter lesions and leptomeningeal enhancing lesions (fig. 1). Spinal MRI showed a hyperintense enhancing lesion at the 5th–6th cervical spinal level. Lumbar puncture revealed a cell density of 19 white blood cells·mm⁻³ (100% lymphocytes) without signs of malignancy and increased protein and normal glucose and angiotensin-converting enzyme (ACE) levels. Her history revealed pneumonia 4 months previously, just before the neurological symptoms had started, and a tongue lesion for almost a year, which had been diagnosed as a benign mycosis. On presentation, her tongue lesion was causing her more and more trouble. Chest computed tomography (CT) revealed hilar adenopathy and pulmonary infiltrates, and biopsy of the tongue lesion showed noncaseating granulomas, both consistent with a diagnosis of sarcoidosis. She was treated with prednisone, after which her symptoms improved. At present, she is still continuing her medication.

Seizures

Seizure may be the first manifestation of neurosarcoidosis; any type of seizure may occur. The presence of seizures indicates chronicity and poor prognosis [73].

Case B. A 19-yr-old female presented in the emergency department with a first tonic-clonic generalised seizure and postictal headache, confusion and dysphasia. Contrast-enhanced CT and MRI revealed a left parieto-occipital enhancing lesion (fig. 2). Differential diagnosis included malignancy, and lumbar puncture was performed, which showed lymphocytosis without signs of malignancy and increased protein and normal glucose and angiotensin-converting enzyme (ACE) levels. Laboratory investigation, including calcium, ACE and lysozyme levels and erythrocyte sedimentation rate (ESR), revealed no abnormalities. Chest radiography was performed in search of primary malignancy, which showed hilar adenopathy and a pulmonary infiltrate. Mediastinal lymph node biopsy showed noncaseating granulomas consistent with the diagnosis of sarcoidosis. She was treated with prednisone and valproate and remained well for a period of 1 yr without abnormalities on control CT. When prednisone was tapered down, she had two recurrences, with cranial neuropathy and multiple cerebral enhancing lesions, and is finally stable on 15 mg prednisone.

Psychiatric symptoms

Granulomatous infiltration of the central nervous system (CNS) may produce a wide variety of mental symptoms. In a patient with multisystemic sarcoidosis and unexplained mental deterioration, aggressive evaluation of the CNS is indicated. Symptoms may respond to corticoid therapy [47, 69]. A subset of sarcoidosis patients present with mild amnesic problems, without objective deterioration or neurological deficit. This might be related to fatigue and concentration problems, or, in some cases, to postural tachycardia syndrome (autonomic dysfunction; see case E) [74]. However, further study using neuropsychological testing is required to explore this.
Spinal sarcoidosis

Spinal sarcoidosis encompasses a spectrum of intraspinal diseases, including arachnoiditis, extradural and intradural extramedullary lesions, and intramedullary lesions [1, 75, 76]. Intramedullary spinal involvement is one of the rare manifestations of the disease (fig. 3). Granulomas involving the spinal cord are often clinically and radiologically indistinguishable from a malignant tumour [77, 78]. Patients may present with transverse myelopathy with para- or tetraparesis [75, 79–81], autonomic dysreflexia [82] radicular syndrome [75] and cauda equina syndrome [83–88].

Case C. A 33-yr-old Iranian male with paresis of the left leg who had had muscle cramps for 2 months and urine retention for 2 weeks presented for a second opinion. His medical history included histologically proven pulmonary sarcoidosis with spontaneous recovery of pulmonary symptoms 6 months before presentation. Physical examination revealed diffuse MRC grade 4/5 paresis of the left leg, clonus of the knee and ankle tendon reflex on the left side and bilateral extensor plantar responses. There was decreased pain, vibration and light touch sensation in both legs until the first thoracic spinal level. The results of laboratory investigation, including ESR and levels of ACE and CSF ACE, protein, glucose and white blood cells, were all within normal limits. Cerebral MRI revealed no abnormalities, whereas spinal MRI showed a medullar lesion at the 2nd–5th cervical level (fig. 3). Subsequently, chest radiography was performed because of the patient’s medical history, and, again, hilar adenopathy was found, compatible with a diagnosis of sarcoidosis. Treatment with 80 mg prednisone q.d. was started, preceded by a q.d. dose of 1,000 mg methylprednisolone intravenously for 3 days. The neurological situation

Fig. 2. – Post-contrast images showing a left parieto-occipital enhancing lesion in case B: a) computed tomography; and b) T2-weighted magnetic resonance imaging.

E. HOITSMA, O.P. SHARMA
stabilised. However, when prednisone was tapered after 10 weeks, symptoms increased. Methotrexate was then started. At present, the patient is stable on 10 mg methotrexate once a week along with 10 mg prednisone and 1 mg folic acid (q.d.).

Peripheral neuropathy

The clinical and pathological spectrum of sarcoid neuropathy is wide. Peripheral neuropathy is considered to be rare in sarcoidosis [89, 90]. The pattern of large-fibre neuropathy reported in sarcoidosis includes multiple mononeuropathies, polyradiculopathy, Guillain-Barré syndrome and symmetric distal polyneuropathy, which may be sensorimotor, mostly sensory or mostly motor [14, 90–102]. Epineural and perineural granulomas and granulomatous vasculitis can cause ischaemic axonal degeneration and demyelination due to local pressure [89, 93, 94]. Nerve biopsy may be helpful in diagnosing problems. In most patients, the clinical course of sarcoid neuropathy is subacute [93], and many patients seem to respond to corticosteroid therapy [17].

Small fibre neuropathy

Recently small fibre neuropathy (SFN) was demonstrated in sarcoidosis [103–105] and appeared to be relatively frequent [104]. However, as standard nerve conduction tests evaluate only large nerve fibre function and quantitative techniques for the assessment of small nerve fibres are not routinely applied, the diagnosis of SFN can easily be missed. SFN has only relatively recently been recognised as a distinct entity. If not recognised, these symptoms may be an enigma to both patient and doctor. Recognition of SFN is important as it may cause disabling symptoms. SFN may also involve autonomic nerve

Fig. 3. – T2-weighted magnetic resonance imaging of the cervical spine in case C, showing hyperintense lesions at the 2nd–5th cervical spinal level (arrows)
fibres and, apparently, cardiac sympathetic denervation [106]. Whether life-threatening symptoms, such as cardiac arrhythmias, occur in sarcoidosis when cardiac autonomic denervation is involved requires further study. SFN may also cause restless leg syndrome (RLS) [107]. RLS and periodic limb movement disorder (PLMD) are frequently associated and related to sleep disturbances. PLMD and RLS have been found to be present in sarcoidosis [108]. In table 2, symptoms suggestive of SFN are presented. The pathophysiology and treatment of SFN in sarcoidosis are unknown and need further study.

Case D. A 55-yr-old male with known pulmonary sarcoidosis for 2 yrs was referred to the neurology department because of severe pain in his hands and lower legs and feet with paraesthesiae. He could not tolerate bedclothes on his legs, and wore short trousers without socks in winter because he could not tolerate clothes on his lower legs. Furthermore, he was suffering from severe fatigue, profuse sweating, diarrhoea, bladder emptying difficulties, sicca syndrome, paroxysmal palpitations with dizziness, after which he once collapsed, and erectile dysfunction. Neurological examination revealed no abnormalities except subjective dyseaesthesia of the lower legs and feet. Differential diagnosis included neuropathy with involvement of autonomic fibres. Electromyography (EMG), nerve conduction studies and cardiovascular autonomic function test results were normal. Thermal threshold testing (TTT) revealed abnormal temperature sensation compatible with SFN. He was treated with prednisone without any success, and subsequently put on methotrexate, again without any improvement. Neuropathic pain treatment [109–112] with gabapentin, amitriptyline, carbamazepine and local capsaicin cream were all without benefit. Opioids gave some pain reduction and improved diarrhoea. However, after a few weeks, he developed urine retention. At present, the patient is severely disabled, mainly because of severe pain and fatigue, and has had to stop working.

Case E. A 39-yr-old male with known pulmonary and neurological involvement (hydrocephalus) of sarcoidosis since 2000 presented at the neurology department for a second opinion in 2003 with symptoms of extreme fatigue, cognitive impairment, pain in the palms and soles, weakness of the legs, and dizziness and blurred vision while standing. He had been suffering from these symptoms for 2 yrs. Cerebral MRI revealed unchanged hydrocephalus without any parenchymal lesions, and lumbar puncture showed normal pressure and normal cell counts and protein and glucose levels. The posture-dependent symptoms in combination with pain in the palms and soles were suggestive of SFN.

<table>
<thead>
<tr>
<th>Table 2. – Symptoms suggestive of small fibre neuropathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory symptoms</td>
</tr>
<tr>
<td>Pain</td>
</tr>
<tr>
<td>Paraesthesiae</td>
</tr>
<tr>
<td>Sheet intolerance</td>
</tr>
<tr>
<td>Restless leg syndrome</td>
</tr>
<tr>
<td>Symptoms of autonomic dysfunction</td>
</tr>
<tr>
<td>Hypo- or hyperhidrosis</td>
</tr>
<tr>
<td>Diarrhoea or constipation</td>
</tr>
<tr>
<td>Urinary incontinence or retention</td>
</tr>
<tr>
<td>Gastroparesis</td>
</tr>
<tr>
<td>Sicca syndrome</td>
</tr>
<tr>
<td>Blurry vision</td>
</tr>
<tr>
<td>Facial flushes</td>
</tr>
<tr>
<td>Orthostatic intolerance</td>
</tr>
<tr>
<td>Sexual dysfunction</td>
</tr>
</tbody>
</table>

170
Therefore, TTT was performed, revealing severely abnormal temperature sensation. Cardiovascular autonomic function testing showed autonomic dysfunction. There was a normal blood pressure response after changing position from the supine to standing position, but an abnormal increase in cardiac frequency (to 63 beats\(\text{min}^{-1}\); normally <30 beats\(\text{min}^{-1}\)). Furthermore, blood pressure modulation frequency in the upright position was too low (0.051 Hz). Both results, as well as the symptoms, are consistent with the diagnosis of postural tachycardia syndrome [74]. He was treated with hydration, increased salt intake and elastic support hose without much benefit. At present, he is on 50 \(\mu\text{g}\) fludrocortisone \textit{q.d.}, with some improvement in his symptoms.

Skeletal muscle involvement

Muscle involvement may be symptomatic or asymptomatic [113, 114]. Asymptomatic granulomatous muscle involvement in sarcoidosis has been reported with a prevalence of 50–80\% [115], whereas symptomatic muscle involvement is much less common (range 1.4–2.3\%) [116]. Patients usually present with pain, weakness and tenderness of the involved muscles, muscle atrophy and sometimes even muscle cramps and contractures [116]. Symptomatic involvement may be divided into the following types: 1) a palpable nodular type, which is seen less frequently; 2) an acute myositis, which is rare and seen more commonly in females; and 3) a chronic myopathic type, which is more common, is slower in onset and occurs later in life [114, 116–118]. As, in the majority, the granulomatous infiltration is in connective tissue structures and necrosis of muscle fibres is uncommon, EMG results may be quite normal [113]. However, EMG can reveal myopathic changes. It may be difficult to distinguish myopathy due to sarcoidosis itself from myopathy due to steroids, especially in chronic myopathy. In the first case, steroids are indicated, whereas, in the second, steroids should be tapered. Steroid myopathy is mostly seen with fluorinated corticosteroids (dexamethasone, triamcinolone and betamethasone). A helpful distinction between the two is presented in table 3. Muscle biopsy is most helpful here. Essentially, in sarcoid myopathy, lesions take the form of granulomata in connective tissue, particularly in a perivascular distribution. The lesions are quite focal and serial sections increase the chances of establishing a diagnosis [114]. In steroid myopathy, type 2 fibre atrophy is typically found.

Diagnosis

Virtually every neurological problem could, indeed, be due to neurosarcoidosis, but only few combinations of symptoms are clinically suggestive of neurosarcoidosis (table 4). The diagnosis of neurosarcoidosis requires a compatible clinical or radiological

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Steroid-induced myopathy</th>
<th>Sarcoid myopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myalgia; proximal weakness, especially legs</td>
<td>Myalgia; weakness: proximal>distal; sometimes palpable nodules, contractures or cramp</td>
<td></td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>Mostly normal</td>
<td>Sometimes elevated</td>
</tr>
<tr>
<td>Frequency</td>
<td>Low: 2–21% in all patients receiving steroids</td>
<td>50% of sarcoidosis patients have muscle granulomas, often asymptomatic</td>
</tr>
<tr>
<td>Electromyography</td>
<td>Low amplitude MUPs of short duration</td>
<td>Fibrillations and positive sharp waves; low amplitude MUPs of short duration</td>
</tr>
<tr>
<td>Biopsy</td>
<td>Type-2 fibre atrophy</td>
<td>Myositis; nodular myositis</td>
</tr>
</tbody>
</table>

MUP: motor unit potential.
picture of sarcoidosis and histological confirmation of noncaseating granulomas [119, 120]. Three clinical situations can be distinguished in patients with neurosarcoidosis: 1) patients with neurological features and histologically confirmed active systemic sarcoidosis; 2) patients with neurological features and a history of sarcoidosis without any evidence of activity; and 3) patients with neurological features without a history of or any evidence of systemic sarcoidosis.

In the first situation, neurological symptoms are most probably related to systemic sarcoidosis and there is justification in starting therapy (fig. 4). However, when treatment fails, the diagnosis should be reassessed and an attempt made to obtain biopsy specimens in order to establish the correct diagnosis. In the second situation, in patients with a history of sarcoidosis who present with neurological symptoms, neurosarcoidosis will be considered early in the differential diagnosis. The need for biopsy is crucial in such a situation. Conversely, in the third situation, neurosarcoidosis will rarely be considered at an early stage. In these cases, neurosarcoidosis remains one of the more challenging diagnostic problems [121, 122]. The present authors believe that the diagnostic approach in the second and third situations should be the same (fig. 5). A prior history of

<p>| Table 4. – Neurosarcoisosis: differential diagnosis |</p>
<table>
<thead>
<tr>
<th>Age yrs</th>
<th>Neurosarcoisosis</th>
<th>Multiple sclerosis</th>
<th>Behçet’s disease</th>
<th>Infections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20–40</td>
<td>20–40</td>
<td>20–40</td>
<td>Any</td>
</tr>
<tr>
<td>Sex</td>
<td>Equal</td>
<td>F>M</td>
<td>M:F</td>
<td>Equal</td>
</tr>
<tr>
<td>Chest radiograph</td>
<td>Abnormal >90%</td>
<td>Usually normal</td>
<td>May be abnormal</td>
<td>May be abnormal</td>
</tr>
<tr>
<td>Hypercalcaemia</td>
<td>Present <15%</td>
<td>Absent</td>
<td>Absent</td>
<td>May be present</td>
</tr>
<tr>
<td>Uveitis</td>
<td>Present 25%</td>
<td>Absent</td>
<td>May be present</td>
<td>May be present</td>
</tr>
<tr>
<td>Facial nerve involvement</td>
<td>May occur</td>
<td>May occur</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Meningitis</td>
<td>May occur</td>
<td>May occur</td>
<td>Absent</td>
<td>May occur</td>
</tr>
<tr>
<td>CSF ACE</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>CSF lysozyme</td>
<td>Present</td>
<td>Present 90%</td>
<td>Absent</td>
<td>May be present</td>
</tr>
<tr>
<td>Oligoclonal IgG</td>
<td>Present 30%</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Kveim test</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

CSF: cerebrospinal fluid; ACE: angiotensin-converting enzyme; Ig: Immunoglobulin; F: female; M: male.

Fig. 4. – Diagnostic flow chart for patients with active systemic sarcoidosis and presentation with neurological symptoms.
sarcoidosis does not necessarily mean that any new problem of the patient is automatically attributable to sarcoidosis. In the authors’ opinion, the approach in a patient with a prior history of sarcoidosis without evidence of current active disease should be the same as in a patient without a history of sarcoidosis.

In figures 4 and 5, the possible steps in establishing a diagnosis are presented [109, 120]. Whole-body gallium scanning [123, 124] or fluorodeoxyglucose positron emission tomography (PET) [125] can be utilised in finding other suitable sites for biopsy. Conjunctival biopsy, a technically simple, inexpensive and safe method, may also be used for diagnosis. Given that as many as 54.1% of patients with sarcoidosis exhibit ocular abnormality, it is worthwhile referring suspected cases for ophthalmological assessment and considering conjunctival biopsy as a method of tissue diagnosis [126–128].

While excluding other causes, the differential diagnosis of sarcoidosis should be taken into account (table 5). Finally, if no evidence of systemic sarcoidosis is found but a CNS biopsy reveals a sarcoid-like granulomatous reaction, there should be awareness of the distinction between systemic neurosarcoidosis and a local (neurological) sarcoid-like reaction, particularly related to an old scar [129] or a helminthic reaction [16, 109, 130].

Neuroimaging

Neuroimaging studies, and especially MRI, are the most sensitive diagnostic tools in detecting and localising neurological lesions. These tests, however, are not specific, since radiological expressions are highly variable [131, 132].
Cerebrospinal fluid

Routine CSF abnormalities are usually nonspecific and include mild pleocytosis, increased protein content and sometimes mildly decreased glucose levels. Furthermore, elevations of ACE [133–139], immunoglobulin G index [140–142], oligoclonal bands [9, 140, 141], CD4:CD8 lymphocyte ratios [143], and lysosome and β2-microglobulin levels [144] have been reported in CSF. Approximately one-third of patients with neurosarcoidosis show normal CSF [11, 18, 119]. Moreover, in conditions such as multiple sclerosis and systemic lupus erythematosus, similar CSF abnormalities may be found.

CSF ACE levels appear to be elevated in more than half of patients with neurosarcoidosis [134]. It should be emphasised, however, that high levels of CSF ACE are not specific to neurosarcoidosis and have also been reported in CNS infections and malignant tumours [134, 139]. Several studies found significantly higher CSF ACE levels in active neurosarcoidosis compared to controls and compared to sarcoidosis without nervous system involvement [133–139]. Furthermore, in serial measurements of CSF ACE, reflection of the clinical picture was found [137, 138, 145]. No correlation was found between serum and CSF ACE levels in patients with neurosarcoidosis, nor was there any correlation between serum ACE levels and the clinical picture or CSF ACE and CSF total protein or CSF albumin levels in such patients (an increase in CSF albumin level being an indicator of functioning of the blood-brain barrier). Thus, CSF ACE is most probably synthesised in the nervous system and released into the CSF by the CNS system sarcoid granulomas. In conclusion, determination of CSF ACE level is not specific for neurosarcoidosis, but seems to be particularly useful in monitoring disease activity and treatment response.
Neurophysiological studies

Electroencephalography may reflect an early stage of acute encephalomeningitis and epileptic discharges caused by the neurosarcoidosis. Visual evoked potentials, brainstem evoked potentials and trigemino-facial reflexes can be useful in detecting cranial neuropathy.

EMG and nerve conduction studies reveal large fibre neuropathy and myopathy, whereas TTT and/or skin biopsy are needed to assess SFN. The latter techniques are not yet routinely available. Assessment of autonomic dysfunction, present in SFN, requires special equipment, such as quantitative sudomotor axon reflex testing. Cardiovascular autonomic function testing using the so-called Ewing tests has a low sensitivity for autonomic dysfunction in SFN [104, 146]. The widely available testing of sympathetic skin response is neither specific nor sensitive [104, 147].

Polysomnography with EMG monitoring can be helpful in revealing PLMD and sleep disturbances.

Clinical course and prognostic features

The long-term clinical outcome of neurosarcoidosis has not been thoroughly evaluated. The low prevalence of the disease makes large long-term follow-up studies difficult. Furthermore, the natural history of the disease remains unclear because of therapeutic intervention [148].

The prognosis of patients with neurosarcoidosis varies. The disease may be monophasic or self-limiting, it may come and go, or it may incessantly progress. Apparently, more than two-thirds of patients with this disease respond to treatment and, therefore, do well. In other cases, the progression may be slow and steady. Neurosarcoidosis carries a mortality of 10%, more than twice that of all other manifestations of the disease combined [149].

The course seems to depend on the type of nervous tissue involved: patients with dural lesions, peripheral neuropathy, cranial nerve lesions and, to a lesser degree, non-enhancing brain lesions seem to fare better than patients with leptomeningeal, brain parenchymal and spinal lesions [1, 14, 150]. Patients with mass lesions or hydrocephalus tend to show more relapses and are often resistant to therapy [151–153]. FERRIBY et al. [154] found that sarcoidosis patients with CNS involvement during the course of the disease had a higher Modified Oxford Handicap Scale score than those with peripheral nervous system involvement (p<0.02). Thus, CNS involvement may be a predictive factor for a less favourable disease course, and early and intensive treatment should be particularly considered in such cases [154].

There have been no controlled studies and few prospective studies of therapy in neurosarcoidosis. Evidence for improvement with treatment is anecdotally reported in many cases, but progression of the disease may occur despite therapy [14, 155–158]. Most relapses occur while tapering prednisone to ≤10 mg [153]. ALLEN et al. [17] found, in their prospective study of 32 patients with neurosarcoidosis, neurological improvement in 16 out of 19 (84%) of their patients after therapy and five out of 13 (38%) of the untreated patients. The most predictable response occurred in patients with peripheral neuropathy: 12 out of 14 treated patients responded. Only one out of eight patients who remained untreated improved spontaneously. ZAJICEK et al. [158] found progression of disease in more than half of their 47 prospectively followed neurosarcoidosis patients, despite corticosteroid and other immunosuppressive therapies.

In a retrospective study, MANZ [4] compared five cases with incidental clinically
unapparent sarcoidosis, six with systemic sarcoidosis without CNS involvement and four with a variety of neurological manifestations in addition to systemic sarcoidosis. They died at a mean age of 55, 47 and 38 yrs, respectively. Thus it appears that sarcoidosis in some patients may cause no or only trivial symptoms, whereas, in the other group of younger patients, it may be severe and debilitating. If the CNS involvement occurs early in the course, it pursues a rapidly progressive course with poor prognosis despite appropriate management [4].

Therapy

Medication

Considering the morbidity and mortality of neurosarcoidosis, most authors recommend early treatment. However, clear guidelines and indications, as well as prospective controlled studies, are not available in neurosarcoidosis, and prospective multicentric studies are warranted. As a result, recommendations about treatment are based on experience rather than evidence.

The therapeutic medical options for neurosarcoidosis are similar to those in sarcoidosis at other locations, and corticosteroids represent the drugs of first choice [159]. Doses in neurosarcoidosis are higher than those advised for the treatment of other localisations of sarcoidosis, including pulmonary. In general, the initial recommended dose is 40 mg "q.d.", whereas, in neurosarcoidosis, an initial dose of 1 mg·kg body weight$^{-1}$·day$^{-1}$ is usually recommended. In severe cases, high doses of intravenous methylprednisolone may be used for a few days in order to obtain a high initial loading dose. Some may use bolus pulsed methylprednisolone once a week, eventually along with low daily doses of oral prednisone, or treatment on alternate days, to avoid the side-effects associated with long-term high-dose oral treatment [158]. However, at present there is not enough evidence to recommend this. Although corticosteroids suppress inflammation in many patients, symptoms tend to recur in a subset of patients at doses of prednisone of <10–25 mg·day$^{-1}$, or the equivalent in other corticoid types, making cessation of corticoids difficult. Furthermore, the incidence of steroid-related side-effects is extremely high with such prolonged treatment.

In patients in whom corticosteroids may be contraindicated, cytotoxic agents, such as methotrexate, azathioprine, ciclosporin and cyclophosphamide, have been used [157, 158, 160–162]. The choice of one or the other is more a matter of experience than of double-blind studies. On the basis of safety and efficacy, methotrexate and azathioprine may be preferred. Methotrexate has been the most widely reported drug for sarcoidosis, and its utility in sarcoidosis has been reviewed [163]. It appears to be well tolerated and associated with minimal toxic effects. The major problem is liver toxicity, for which regular blood tests are needed. The response rate of methotrexate in neurosarcoidosis is \sim60%, which is similar to that in chronic sarcoidosis [161]. Azathioprine has been reported useful in chronic sarcoidosis, although others have been disappointed with its ability in treating patients with refractory sarcoidosis [164]. Treatment with ciclosporin has also resulted in variable outcomes [161]. It appears that \sim75% of neurosarcoidosis patients respond to ciclosporin [157, 160]. The response rates for intravenously administered cyclophosphamide seem to be \sim60–80% in patients with corticosteroid-resistant neurosarcoidosis [161, 162]. A short-course pulsed regimen appeared to minimise cumulative toxicity [162]. The place of newer immunosuppressive agents, such as mycophenolate mofetil, has yet to be determined.

Drugs that alter the immune system or block cytokine effect have also been used for
the treatment of patients with sarcoidosis. The antimalarial agents chloroquine and hydroxychloroquine have been reported useful in the treatment of some patients with neurological sarcoidosis [165]. Tumour necrosis factor (TNF) is released at higher levels by alveolar macrophages from patients with active sarcoidosis, and the levels go down with corticosteroid or methotrexate therapy [164]. These observations have led to studies that suppress TNF release or block its effect on the cell. Immunomodulators known to suppress TNF release are thalidomide and infliximab. Infliximab has been shown effective in few cases with refractory sarcoidosis. In refractory neurosarcoidosis, it may also be effective [166–170]. The toxicity of treatment for up to 1 yr is low. However, the effect of long-term treatment is still unclear [164]. An important complication associated with infliximab has been the increased rate of tuberculosis [171].

Whether or not anti-TNF-α therapy is beneficial in SFN related to sarcoidosis is unknown to date. However, the following case underlines this possibility. Theoretical support for the effect of anti-TNF-α therapy on SFN may be found in the following. First, it has been appreciated recently that pro-inflammatory cytokines, including TNF-α, contribute to the development of inflammatory and neuropathic pain, as well as hyperalgesia [172]. Secondly, TNF-α plays an important role in neuropathies such as Guillain-Barré syndrome. In Guillain-Barré syndrome, small nerve fibres are also involved. An elevated serum concentration of TNF-α shows a positive correlation with neuropathy severity in patients with Guillain-Barré syndrome [173, 174]. Furthermore, the decrease in serum TNF-α levels and increase in serum soluble TNF receptor levels show a positive correlation with neuropathy recovery following treatment in these patients. Finally, the presence of SFN in several immune-mediated diseases suggests a common final pathway in the pathogenesis of the disorder that may be related to the ongoing inflammatory process. This similarity might be related to cytokine release in immune-mediated diseases. Support for the hypothesis that SFN in immune-mediated diseases is related to cytokine release is found in pharmacological and physiological studies. These studies report that pro-inflammatory cytokines, such as TNF-α, are strongly involved in the generation and maintenance of neuropathic pain [172, 175–178]. Therefore, it is tempting to speculate that anti-TNF-α therapy might be beneficial in SFN.

Case F reveals two new and important issues. First, severe SFN appeared to be reversible in this case. Secondly, TNF-α may be a crucial cytokine in the pathogenesis of SFN related to sarcoidosis, and possibly in other immune-mediated inflammatory diseases, as well as in diabetes. The successful reaction to anti-TNF-α therapy is very promising, and this observation opens a window for new therapeutic and pathogenetic SFN studies.

In figure 6, a therapeutic flow chart for neurosarcoidosis is presented. Side-effects, as well as experience with certain drugs, may play a role in drug choice (table 6).

Case F. A 39-yr-old Caucasian man with known sarcoidosis for 2 yrs was diagnosed with severe SFN with autonomic involvement. Owing to his clinical deterioration, he was unable to work. Treatment with 40 mg prednisone q.d. was initiated, without benefit, however, and tapered. Thereafter, methotrexate was added and increased up to 20 mg weekly. Despite this, his symptoms deteriorated. Several neuropathic pain treatments initiated achieved no improvement. He developed severe skin lesions on both hands. The lesions were diagnosed as burns due to insensitivity to heat, attributable to the SFN.

Subsequently, infliximab was started at a dosage of 400 mg once every 4 weeks. This was remarkably successful; all clinical features of sarcoidosis and SFN improved. Control TTT and cardiovascular autonomic function testing both showed spectacular improvement in his SFN features. Moreover, his quality of life improved substantially and he even restarted working successfully.
There are several reports on radiation therapy in refractory neurosarcoidosis [179–183]. Although evidence-based recommendations cannot be provided, radiation therapy may be considered in patients who do not respond to medication.

Neurosurgical resection of intracranial and spinal granulomas is only indicated in life-threatening situations, or when insufficient effect is achieved with medical treatment. However, extramedullary spinal lesions may be amenable to surgical resection with post-operative steroid therapy [184]. Hydrocephalus usually requires ventriculoperitoneal shunting [185, 186].

Conclusions

Neurosarcoidosis is a disease with many faces. Diagnosis is based on the combination of clinical and radiological evidence and histological evidence of granuloma formation. Judicious use of the recently developed CT, MRI and PET may obviate the need for
Table 6. – Medical treatment in neurosarcoidosis

<table>
<thead>
<tr>
<th>Medication</th>
<th>Starting dose</th>
<th>Side-effects</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>1 mg kg⁻¹ day⁻¹ p.o.</td>
<td>Osteoporosis, Cushing’s syndrome, hypertension,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>diabetes mellitus, ulcer pepticum, pseudotumour</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cerebri, glaucoma, cataract, euphoria, psychosis</td>
<td></td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>1000 mg·day⁻¹ i.v. for 3 days</td>
<td>Very rare within 3 days</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>10–25 mg once weekly orally or s.c.</td>
<td>Anaemia, neutropenia, hepatic dysfunction, pneumonitis</td>
<td>Should be combined with folic acid (1 mg·day⁻¹ p.o.)</td>
</tr>
<tr>
<td>Cytotoxic agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>5 mg kg⁻¹ day⁻¹ divided in 2 doses p.o.</td>
<td>Renal insufficiency, hypertension</td>
<td>Expensive</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>50 mg t.i.d. orally</td>
<td>Anaemia, neutropenia, hepatic dysfunction</td>
<td>Cheap</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>50–200 mg q.d., p.o.</td>
<td>Cystitis, neutropenia</td>
<td>Urinalysis monthly to monitor for microscopic haematuria</td>
</tr>
<tr>
<td></td>
<td>500 mg i.v. once every 2–3 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunomodulators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>200 mg·day⁻¹ p.o.</td>
<td>Retinopathy, ototoxicity, myopathy, cardiomyopathy,</td>
<td>Routine eye examinations every 3–6 months</td>
</tr>
<tr>
<td>Infliximab</td>
<td>3 mg kg⁻¹ i.v. once in weeks 1, 3 and 5, tthen once every 6 weeks</td>
<td>Fever, headache, dizziness, flushes, nausea, abdominal pain, dyspepsia, fatigue, myalgia, arthralgia, polyneuropathy</td>
<td>Tuberculosis screening is indicated before treatment is started</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contraindicated in patients with heart failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Should be combined with methotrexate</td>
</tr>
</tbody>
</table>

*: all can cause infection due to immunosuppression; **: generally used as adjuncts to low-dose steroids, or as steroid-sparing agents when long-term treatment is necessary; in refractory patients, they may be used in combination with high-dose steroids.
biopsy in selected cases. Once the diagnosis is established, treatment choices are limited, and include corticosteroids, antimalarials and anticytotoxic agents.

Keynote messages

1) Neurosarcoidosis, like a chameleon, has many faces. It can involve any part of the neurological apparatus. SFN is a recently recognised complication of sarcoidosis.

2) Histological evidence is needed to establish a firm diagnosis.

3) Corticosteroids are the drug of first choice in neurosarcoidosis. Several cytotoxic agents, including methotrexate, cyclophosphamide and azathioprine, have been used. Antimalarials have been found to be effective in selected cases. The value of new drugs that block various cytokines needs to be established.

Summary

The nervous system is involved in 5–15% of patients with sarcoidosis. When present, neurosarcoidosis can be serious and devastating. The disease presents in many different ways and resembles many other neurological disorders. Thus, without biopsy evidence, the diagnosis of nervous system sarcoidosis remains a troublesome clinical dilemma. The firm diagnosis of neurosarcoidosis requires a biopsy specimen and consistent neurological presentation in a patient with multisystemic sarcoidosis. Corticosteroids represent the drug of first choice. In addition, several cytotoxic agents and antimalarial agents are used to treat sarcoidosis. The future is pregnant with expectations of new drugs that block inflammatory cytokines involved in the pathogenesis of sarcoidosis.

Keywords: Neurosarcoidosis, small fibre neuropathy.

References

182

NEUROSARCOIDOSIS

